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Abstract

One objective of the Climate Science for a Sustainable Energy Future (CSSEF) program is to de-
velop the capability to thoroughly test and understand the uncertainties in the overall climate model
and its components as they are being developed. The focus on uncertainties involves sensitivity
analysis: the capability to determine which input parameters have a major influence on the out-
put responses of interest. This report presents some initial sensitivity analysis results performed
by Lawrence Livermore National Laboratory (LNNL), Sandia National Laboratories (SNL), and
Pacific Northwest National Laboratory (PNNL). In the 2011-2012 timeframe, these laboratories
worked in collaboration to perform sensitivity analyses of a set of CAM5, 2◦ runs, where the re-
sponse metrics of interest were precipitation metrics. The three labs performed their sensitivity
analysis (SA) studies separately and then compared results. Overall, the results were quite consis-
tent with each other although the methods used were different. This exercise provided a robustness
check of the global sensitivity analysis metrics and identified some strongly influential parameters.
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Chapter 1

Introduction

The overall objectives of the Climate Science for a Sustainable Energy Future (CSSEF) program
are to develop:

• The capability to thoroughly test and understand the uncertainties in the overall model and
its components as they are being developed;

• Major scientific advances in the components that will achieve greater fidelity in modeling
feedbacks in the climate system;

• Development of model evaluation procedures that allow the rapid ingest of observational
data for model and component evaluation;

• Flexible dynamical cores that enable fine-scale simulations; and

• Early adaptation of the model algorithms and code to the next generation of computers.

The focus on uncertainty quantification involves sensitivity analysis: the capability to determine
which input parameters have a major influence on the output responses of interest. This report
presents some initial sensitivity analysis results. In the 2011-2012 timeframe, three laboratories
(Lawrence Livermore National Laboratory (LNNL), Sandia National Laboratories (SNL), and Pa-
cific Northwest National Laboratory (PNNL)) worked in collaboration to perform sensitivity anal-
yses of a set of CAM5, 2◦ runs, where the response metrics of interest were precipitation metrics.
The three labs performed their sensitivity analysis (SA) studies separately and then compared re-
sults. Overall, the results were quite consistent with each other although the methods used were
different. Thus, we feel that this exercise provided a robust analysis approach.

In general, performing sensitivity analysis for expensive computational simulations with many
parameter values is not a trivial task. A paper in the Journal of Geophysical Research by A. Saltelli
[7] indicates that many sensitivity analyses use derivative-based approaches or methods that vary
one parameter at a time (One at a Time or OAT). Saltelli discusses limitations of such approaches:
they only explore a reduced portion of the input space and they typically do not account for pa-
rameter interactions. For models such as climate models that are highly nonlinear and have effects
that are non-additive in the parameters, Saltelli recommends global sensitivity analysis approaches
to account for the full effects of parameters on outputs. Note that global methods generally vary
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multiple parameters simultaneously. Also note that sensitivity analysis is often the first step to fur-
ther analyses such as uncertainty quantification and calibration (parameter estimation or parameter
tuning). For an overview of global sensitivity analysis methods, we recommend [8] and [9].

1.1 Community Atmosphere Model 5

1.2 Table of parameters [LLNL & PNNL]

Thirty-two parameters were varied for this analysis, listed in Figure 1.1. The parameters relating to
cloud microphysics were varied in the set that PNNL ran, and other atmospheric parameters were
varied in the set that LLNL ran. There were some parameters varied in both, as denoted with “B”
in the last column in Figure 1.1.

Figure 1.1. Table of input parameters varied for the studies per-
formed in this report
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Table 1.1. Response Metrics

7 Regions 4 Seasons plus Annual Precipitation Metrics
REG01 = Mountains Winter DJF Magnitude of first four harmonics
REG2 = High Plain Spring MAM of diurnal hydrological cycle
REG03 = Mid Plain Summer JJA Phase of first four harmonics
REG04 = Low Plain Fall SON of diurnal hydrological cycle
REG05 = South East Annual ANN Ave. daily precip. percentiles:

REG06 = Equator Band 40S-40N 25%, 50%, 75%, 95%
REG07 = Southern Great Plains

1.3 Metrics

In these data sets, 1145 LLNL runs and 256 PNNL runs were performed. The metrics were com-
puted using 5 years of hourly precipitation output. The study focused on two aspects of precipita-
tion. The diurnal metrics of the hydrological cycle were calculated, including the magnitude and
phase of the first harmonics of the diurnal cycle. These harmonics were calculated for each quarter
(DJF, MAM, JJA, SON) as well as annually, for each of seven regions. The regions are shown in
Figure 1.2. The precipitation quantiles were also calculated, including the 25%, 50%, 75%, and
95% precipitation quantiles. The different response metrics are shown in Table 1.1. There were
420 responses calculated for each CAM5 model run (7 regions * 5 time periods * 12 metrics (4
harmonic magnitudes, four harmonic phases, and four precipitation percentiles). With this large
volume of response metrics, we had to develop approaches to aggregate the individual sensitivities
from a particular response.

Figure 1.2. Seven regions of interest investigated in this study.
There are the six regions shown, and the last region, REG06, is the
+/- 40-degree band around the equator (40S to 40N).
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1.4 Ensemble design

Separate ensemble runs were chosen to be performed at LLNL and at PNNL. The LLNL runs fo-
cused on parameters governing the atmosphere model, while the PNNL runs focused on parameters
related to aerosols, but there was some overlap.

LLNL ensemble

The LLNL runs initially involved a Latin Hypercube sampling (LHS) study of 220 runs. This
number was determined as ten times the number of parameters (22 for LLNL). Five separate LHS
runs of 220 samples each were performed, for a total of 1100 runs. Then, one additional run
involving parameters at their nominal values and two endpoints (one-at-a-time variations) was
performed, for a total of 45 runs. The overall total was 1145 runs.

PNNL ensemble

The PNNL ensemble involved 256 runs, generated by a quasi Monte Carlo (QMC) sample. These
256 runs involved samples over 16 parameters.

1.5 Sampling methods

1.5.1 Latin Hypercube Sampling [SNL]

The most common method of incorporating uncertainty into simulations is to characterize uncer-
tain input parameters with specific probability distributions, sample from those distributions, run
the model with the sampled values, and do this repeatedly to build up a distribution of the out-
puts. Since computational simulations are often expensive, it is not always feasible to use random
sampling to generate sufficiently large sample sizes. Thus, other methods have been developed.
A good alternative to random sampling is Latin Hypercube Sampling (LHS) [McKay et al., Iman
and Conover 1980]. LHS is a stratified sampling method where the support of the distribution is
divided into strata or bins. Each stratum is chosen to be equally probable, so that the strata are
of equal length for uniform distributions but of unequal length for normal distributions, for exam-
ple: the strata near the center of normal distributions are shorter than the strata near the tails. In
Latin Hypercube Sampling, each uncertain variable is divided into N segments of equal probabil-
ity, where N is the number of samples requested. For each of the uncertain variables, a sample
is selected randomly from each of these equal probability segments. These N values for each of
the individual parameters are then combined in a shuffling operation to create a set of N parameter
vectors with a specified correlation structure. A feature of the resulting sample set is that every
row and column in the hypercube of partitions has exactly one sample. Since the total number of
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samples is exactly equal to the number of partitions used for each uncertain variable, an arbitrary
number of desired samples is easily accommodated (as compared to less flexible approaches in
which the total number of samples is a product or exponential function of the number of intervals
for each variable, i.e., many classical design of experiments methods).

The stratification approach in LHS serves to force a better sampling across the entire distribu-
tion and eliminate some of the clustering of sample points often seen in random sampling. For
multidimensional sampling, it also serves to achieve a good ”mixing” of sample values from dif-
ferent inputs. For example, you would not want the sample in strata 1 from input A to be paired
with the sample in strata 1 from input B. Instead, you want the pairing of the strata to be performed
in such a way to generate multi-dimensional samples that are ”well-mixed” or randomized. Pair-
ing algorithms have been designed to achieve this [Iman and Conover, 1982] and generate sample
with a user-specified correlation structure. Finally, LHS is more efficient than pure Monte Carlo
in the sense that it requires fewer samples to achieve the same accuracy in statistics (variance of
the mean, for example). [Owen, Stein] If the function being sampled is additive, meaning it can
be decomposed into additive functions of the individual input parameters, then the advantages of
LHS are the greatest. For further information on the method and its relationship to other sampling
techniques, one is referred to the works by McKay, et al. [6], Iman and Shortencarier [4], and
Helton and Davis [3].

1.5.2 Quasi Monte Carlo [PNNL]

Regular Monte Carlo (MC) sampling is often insufficient because it generates redundant sam-
pling points (clumps) and cannot fill the parameter space effectively. This may result in wasting
computational time and unreliable sensitivity analysis. Quasi-Monte Carlo (QMC) methods use
quasi-random (also known as low-discrepancy) sequences instead of random or pseudo-random
numbers. Unlike pseudo-random sequences, quasi-random sequences do not attempt to imitate the
behavior of random sequences. Instead, the elements of a quasi-random sequence are designed
such that they are better dispersed than random sequences. There are a number of QMC sequences
including Halton and Hammersley sequences. Many of the quasi MC sequences are based on a
prime number. For further information on Quasi-Monte Carlo sequences, see [5].
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Chapter 2

Methods

In general, sensitivity analysis methods require large numbers of function evaluations, typically
greater than the number of actual CAM5 model runs that were performed for this study. Thus, all
of the approaches utilized surrogates (also called meta-models or emulators) of the CAM5 model.
The purpose of constructing a surrogate is so that it can be evaluated easily and cheaply. The
following section discusses the surrogates that were employed in these studies.

2.1 Surrogate methods

2.1.1 Generalized linear models [PNNL]

The generalized linear model (GLM) is a flexible generalization of ordinary linear regression that
allows for response variables that have other than a normal distribution. The GLM generalizes
linear regression by allowing the linear model to be related to the response variable via a link
function and by allowing the magnitude of the variance of each measurement to be a function of
its predicted value. (need more)

2.1.2 MARS

MARS, multivariate adaptive regression splines, are credited to [2]. The form of the MARS model
is based on the following expression:

f̂ (x) =
M

∑
m=1

amBm(x) (2.1)

where the am are the coefficients of the truncated power basis functions Bm, and M is the
number of basis functions. The MARS software partitions the parameter space into subregions,
and then applies forward and backward regression methods to create a local surface model in each
subregion. The result is that each subregion contains its own basis functions and coefficients, and
the subregions are joined together to produce a continuous surface model.
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MARS is a nonparametric surface fitting method and can represent complex multimodal data
trends. The regression component of MARS generates a surface model that is not guaranteed to
pass through all of the response data values. Thus, like the quadratic polynomial model, it provides
some smoothing of the data.

2.1.3 Gaussian process models [LLNL & SNL]

The set of interpolation techniques known as Kriging, also referred to as Gaussian Processes, were
originally developed in the geostatistics and spatial statistics communities to produce maps of
underground geologic deposits based on a set of widely and irregularly spaced borehole sites[1].
Gaussian Process models are now widely used in response surface modeling, to “emulate” complex
computer codes [Sacks et al.] The recent book by Rasmussen and Williams provides a good
overview of Gaussian process models. [Rasmussen and Williams]. Building a Gaussian process
model typically involves the

1. Choice of a trend function,

2. Choice of a correlation function, and

3. Estimation of correlation parameters.

A Gaussian process emulator, f̂ (x), consists of a trend function (frequently a least squares fit
to the data, g(x)T

β ) plus a Gaussian process error model, ε (x), that is used to correct the trend
function.

f̂ (x) = g(x)T
β + ε (x)

This represents an estimated distribution for the unknown true surface, f (x). The error model,
ε (x), makes an adjustment to the trend function so that the emulator will interpolate, and have
zero uncertainty at, the data points it was built from. The covariance between the error at two
arbitrary points, x and x′, is modeled as

Cov
(
y(x) ,y

(
x′

))
= Cov

(
ε (x) ,ε

(
x′

))
= σ

2 r
(
x,x′

)
.

Here σ2 is known as the unadjusted variance and r (x,x′) is a correlation function. Gardar and Don:
We should decide on a convention for notation before we write more: I will include the formulas
for the prediction mean and variance, but want to first get a consensus on notation. There are three
main steps to creating and using a Gaussian process model: (1) define the mean function, (2) define
the covariance function and estimate the hyperparameters governing the covariance function, (3)
perform the prediction calculations at new points. There are many numerical issues involved in
determining the length-scale parameters governing the covariance function; the interested reader
should consult (cites). There are two main approaches for determining the length-scale parameters
in the covariance function. One is to use maximum likelihood estimation, where one maximizes
the likelihood function. This results in point estimates of the covariance parameters. The other
approach is to use Monte Carlo Markov Chain (MCMC) sampling to generate posterior distribu-
tions on the hyperparameters which govern the covariance function and the mean function. The
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assumption of zero mean GPs is often made, so the Bayesian updating only involves hyperparam-
eters governing the covariance function. Since these may be quite complicated, one usually still
needs a MCMC sampling method to generate the posterior.

2.2 Sensitivity methods

Our ultimate goal is to understand the sensitivity of the various metrics considered with respect
to the uncertain input parameters. The edited volume by Saltelli, Chan and Scott (2000) and the
paper Saltelli, Tarantola and Campoiongo (2000) provide a good overview with application to this
topic.

Our focus is on global sensitivity indices, which reflect the sensitivity of a quantity of interest
with respect to the uncertain inputs when they are varied over the whole prior uncertainty range
(versus at a particular value in the input space). For added robustness to our analysis, we report
results from multiple sensitivity analysis methods, with some methods operating directly on the
raw ensemble of simulations while others relying on a surrogate model.

2.2.1 Correlation analysis [SNL & PNNL]

Correlation refers to a statistical relationship between two random variables or two sets of data.
In analysis of computer experiments, where an ensemble of simulation runs have been performed
according to some type of experimental design, we have a set of results. The convention is to
have each sample or run of the simulation be written on a separate row. For example, if N sim-
ulation runs were performed, with D inputs and P outputs, the resulting ensemble matrix would
be of dimension N*(D+P). In this situation, we can perform a correlation analysis on the entire
matrix. However, often the correlations between inputs and inputs are not interesting, especially
if the sample design has been constructed so that the inputs are independent and thus the correla-
tions between inputs are near zero. Likewise, the correlations between outputs and outputs may
not be interesting, except in the case where some of the outputs are very strongly correlated and
thus perhaps one can reduce the analysis by only focusing on a subset of outputs. The main fo-
cus of correlation analysis of computer experiments is the correlation between inputs and outputs.
There are several types of correlations that can be calculated: simple, rank, and partial. Simple
correlation measures the strength and direction of a linear relationship between variables. Simple
correlation refers to Pearson’s correlation coefficient, which is defined for two variables x and y
as: Corr(x,y) = ∑i(xi−x̄)(yi−ȳ)√

∑i(xi−x̄)2 ∑i(yi−ȳ)2
. The Pearson correlation is +1 in the case of a perfect positive

(increasing) linear relationship, -1 in the case of a perfect decreasing (negative) linear relationship,
and some value between -1 and 1 in all other cases. A simple correlation near zero means there
is less of a relationship between the variables: they are close to being uncorrelated. Note that if
two variables are independent, they will have zero correlation but the converse is not true: two
variables may have zero or near-zero correlation but show a strong type of relationship. Rank cor-
relations refer to correlations performed on the ranks of the data. Ranks are obtained by replacing
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the actual data by the ranked values, which are obtained by ordering the data in ascending order.
For example, the smallest value in a set of input samples would be given a rank 1, the next smallest
value a rank 2, etc. Rank correlations are useful when some of the inputs and outputs differ greatly
in magnitude: then it is easier to compare if the smallest ranked input sample is correlated with
the smallest ranked output, for example. A rank correlation coefficient is also called a Spearman
correlation. Partial correlation coefficients are similar to simple correlations, but a partial correla-
tion coefficient between two variables measures their correlation while adjusting for the effects of
the other variables. For example, if one has a problem with two highly correlated inputs and one
output, the correlation of the second input and the output may be very low after accounting for the
effect of the first input.

2.2.2 Variance based decomposition and Sobol’ Sensitivity Indices [LLNL
& SNL]

One of the more common, and successful sensitivity analysis methods are those based on variance
decomposition of the response of interest with respect to the uncertain input parameters. In this
case, one seeks to decompose the variance of a given response V (y), where y = f (x1, . . . ,xp), as
contributions from various sources, both due to a given input parameter alone and various level
of interaction between input parameters (i.e. main effect, two-way interaction, etc.). This type of
analysis mirrors analyses of variance (ANOVA) in the statistical literature.

If we assume that the distribution of the uncertain input parameters are independent, that is,
p(x1, . . . ,xp) = ∏

p
i=1 pi(xi), and that the response function f (x) is square-integratable, then

V0 ≡V (y) =
p

∑
i=1

Vi + ∑
i< j

Vi j + ∑
i< j<k

Vi jk + · · ·+V1···p,

where
Vi ≡V (E(y|xi)) and Vi j ≡V (E(y|xi,x j))−Vi−Vj

and similarly for higher terms. Here, yi(x̃i) ≡ E(y|xi = x̃i) denotes the conditional expectation of
y given the i-th input (and averaging over the remaining inputs). Hence, Vi is simple the variance
of the 1D function yi(x̃i) with respect to the i-th input distribution, pi(x̃i). Similarly, we define
V−i = V (E(y|x1, . . . ,xi−1,xi+1, . . . ,xp)); that is, the conditional variance of y given all the input
except the i-th one.

Of main interest are Sobol’ main and total effect sensitivity indices, defined as

Si ≡
Vi

V0
and ST

i ≡
V0−V−i

V0
,

respectively. Hence, Si gives the fraction of the total variance explained by the i-th main effect
alone (i.e., the contribution of the i-th input without any interactions to other inputs), while the
total effect provides the fraction of the total variance explained by all terms involving the i-th term.
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To give an example, if there are three inputs (p = 3), then

ST
1 =

V1 +V12 +V13 +V123

V0
= S1 +S12 +S13 +S123.

Hence, ST
i is a measure of the total (global) importance of the i-th input, while the difference

between ST
i and Si gives a measure of how much the i-th input interacts with the remaining inputs.

Numerous methods have been proposed to estimate Sobol’-type of sensitivity indices, all of
them relying on a clever sampling of the uncertain input parameters (see Saltelli, Chan, and Scott,
2000, for an overview). For example, one of the original methods to estimate Si and ST

i (Sobol’s
method) requires 2n(p+1) number of model evaluations, which are constructed from two different
n× p LH-sampled input configurations. For p = 22 parameters (the LLNL study), this would call
for a relatively large value of n, say 1,000, yielding 46,000 runs. More economic ways exist that
cut the total number of runs by approximately half. However, this is simple not feasible with
CAM5, even at the course resolution and short time integration used in the CSSEF study. The
approach taken here is to use the ensemble of CAM5 simulations to train a surrogate model and
sample the surrogate model in place of the simulator. The uncertainty in the resulting sensitivity
indices is then both due to the sampling-based approach used to estimate the indices (which can
be kept as small as desired) and the uncertainty in the surrogate model itself, which need to be
assessed.
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Chapter 3

Results

This chapter presents the results of the sensitivity analyses performed at the various laboratories.
The goal of these studies was to downselect from the thirty-two parameters analyzed in the 2◦

ensembles to a more limited set of parameters (ideally, around 10) to be varied in higher-resolution
1◦ ensemble runs. This chapter first presents the results of each lab separately, then presents the
aggregation of their work in the final section.
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3.1 SNL Results

The group at SNL took the following approach: they used two global sensitivity analysis meth-
ods: correlation analysis and variance-based decomposition (VBD). They created Gaussian process
model surrogates for the various metrics based on the parameter sets and CAM5 runs described in
Chapter 1. They analyzed the LLNL and PNNL data separately, and they analyzed the harmonics
of the diurnal cycle (magnitude and phase of the first four modes) separately from the percentiles
of precipitation. The results were aggregated across regions and across metrics, first by LLNL vs.
PNNL data and also by correlation vs. VBD analysis. Then, the results were combined to create a
union of LLNL and PNNL data. This union of the significant variables allowed us to identify a set
we can consider eliminating in the 1-degree nudged runs.

Figures 3.1 and 3.2 show the results of correlation analysis and VBD analysis for the har-
monics for the LLNL ensemble. These figures show the percentage of times a parameter was
considered significant, as measured by a correlation coefficient whose absolute value was greater
than 0.5, or a variance-based main effect indices whose value was greater than 0.1. The percentage
is taken across all regions, all seasons, and phase and magnitude of the harmonics. For example,
in Figure 3.1, one can see that parameter 22 is important about 45% of the time. This parameter
(from Figure 1.1) is tau, the convective time scale, which is known to play an important role in the
precipitation. An important point to note is how similar Figures 3.1 and 3.2 are to each other: the
important parameters are consistent across these two methods.

Figure 3.1. Correlation with respect to all harmonics, all regions,
all seasons, LLNL data

Figures 3.3 and 3.4 show analogous results of correlation analysis and VBD analysis for
the harmonics of the PNNL ensemble. Parameter number 4 for the PNNL ensemble is the most
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Figure 3.2. VBD sensitivity indices with respect to all harmon-
ics, all regions, all seasons, LLNL data

significant, which is the cdnl, the cloud droplet number limiter (also called cldwatmi cdnl). Again,
we see that Figures 3.3 and 3.4 are very similar.

Figure 3.3. Correlation with respect to all harmonics, all regions,
all seasons, PNNL data

The results of Figures 3.1 to 3.4 were aggregrated: these aggregrate results are shown in
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Figure 3.4. VBD sensitivity indices with respect to all harmon-
ics, all regions, all seasons, PNNL data

Figure 3.5.

Figure 3.5. Global sensitivity indices with respect to all harmon-
ics, all regions, all seasons, for both LLNL and PNNL data

26



Finally, a similar analysis was performed with respect to the precipitation percentiles. The
results are similar to the results from the harmonics of the diurnal cycle, although more parameters
were significant in the precipitation percentile data, especially for the LLNL data. In the interest
of space, we only present the final aggregated result in Figure 3.6.

Figure 3.6. Global sensitivity indices with respect to precipita-
tion percentiles, all regions, all seasons, for both LLNL and PNNL
data

In summary, the SNL analyses demonstrated that correlation coefficients and Sobol’ variance-
based indices gave similar results within a particular data set. We did find that the important
variables differed for harmonics and precipitation. For harmonics, the important variables were:

• LLNL: uwshcu criq, zmconv dmpdz, zmconv tau

• PNNL: cldwatmi ai, cldwatmi cdnl, cldwatmi dcs

For the precipitation percentiles, the important variables were:

• LLNL: cldwatmi dcs, zmconv alfa, zmconv c0 lnd, zmconv ke, zmconv tau

• PNNL: cldwatmi ai, cldwatmi cdnl, cldwatmi dcs
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3.2 PNNL Results

PNNL developed generalized linear models (GLM) for the harmonics and the precipitation per-
centiles. The GLMs were used to calculate the percentage of response variance explained for vari-
ous metrics, across various regions and in different seasons. The PNNL team plotted the results of
the relative contributions of variance explained, and they also performed correlation analysis.

Figure 3.7 shows the results of various fits using the GLM. The metric shown in this figure is R-
squared, the fraction of variance for an output variable explained or captured by GLM. R-squared
takes values between zero and one, where a value of one typically means a “perfect fit” (e.g. the
output is perfectly explained by the inputs). Note that R-squared is much smaller in DJF than in
other seasons for both PNNL and LLNL data. The R-squared values for LLNL data are generally
larger than for PNNL data, since the LLNL simulations cover more parameters related to macro-
and micro-physics and shallow and deep convections, which all are important for precipitation
diurnal cycle and extremes. The R-squared values for PNNL data are larger in the tropics (REG06)
than other regions and higher for the harmonic magnitudes (MAG) than other variables.

Figure 3.8 is a more detailed figure which shows the contribution of the individual parameters
with respect to percent output variance explained for the magnitude of the harmonics. This is
calculated for each of the 16 parameters, for 5 seasons (5 colors). The numbers on the x-axis
are the relative contribution of each parameter’s uncertainty to the total variance of the harmonic
magitude in REG01. This type of plot can provide a lot of information for the sensitivity and
variability/tendency of each parameter.

Figure 3.9 shows a similar plot, for results over the tropics.

Figures 3.10 and 3.11 show aggregated results, where the color of each square denotes the
percentage of variance explained for that parameter and metric combination. Note that the red
squares denote the most important parameters. For example, the upper left hand plot in Figure 3.10
indicates that the dcs parameter is very important to explaining the variance of the 95th percentile
of precipitation across almost all the regions, as shown by the red line in that Figure. These plots
are very useful for aggregating information across metrics and across regions.

Finally, the PNNL team performed a correlation analysis, similar to what the SNL team did.
Their results are shown for the PNNL and LLNL datasets in Figures 3.12 and 3.13.
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Figure 3.7. R-squared values for Generalized Linear Model fits
with respect to diurnal cycle harmonics magnitude and phase and
95th percentile, for both PNNL and LNNL data

.
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Figure 3.8. Contribution of each input parameter’s uncertainty to
total output variance, for the Mountain region REG01, all seasons

.
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Figure 3.9. Contribution of each input parameter’s uncertainty to
total output variance, for the Tropics region REG06, all seasons

.
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Figure 3.10. Contribution of each input parameter’s uncertainty
to total output variance, for all parameters and all regions, for
PNNL precipitation metrics.

Figure 3.11. Contribution of each input parameter’s uncertainty
to total output variance, for all parameters and all regions, for
LNNL precipitation metrics.
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Figure 3.12. Correlation of each input parameter to outputs for
all parameters and all regions, for PNNL precipitation metrics.

Figure 3.13. Correlation of each input parameter to outputs for
all parameters and all regions, for LLNL precipitation metrics.
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3.3 LLNL Results

The LLNL group created statistical emulators that were trained on PNNL, LLNL, and LLNL/PNNL
data jointly. They used two types of surrogate models, Gaussian process models (GPM) and Mul-
tivariate Adaptive Regression Splines (MARS). The LLNL group used the emulators to analyze
the response and perform the sensitivity analysis via Sobol’ indices. These indices were then
aggregated across metrics, regions, and seasons to produce a ranked list of parameters.

Figure 3.14 shows the percent of variance explained by the first four harmonics. Note that
most of the variance is explained by the first two harmonics and as such, all the following analysis
focuses on the two first harmonics.

Figure 3.14. Regional average variance-explained of the 4 har-
monics of the diurnal cycle by labs and seasons.

Further analysis of the harmonics and precipitation quantiles showed that the largest variation
in the diurnal cycle was in the spring and summer seasons. The largest median precipitation (Q50)
was in JJA and the largest Q95 was in MAM.

We now present detailed preliminary examination focusing on the MAM and JJA seasons for
two different types of regions, the SGP (REG07) and the SouthEast (REG05) regions. The ap-
proach developed using these two regions and seasons is then applied to all six regions at the end.

The two emulators (GPMs and MARS) were trained separately first and then jointly on the
LLNL and PNNL data. For the LLNL data, two sets of LHS samples were used (2x220 = 440

34



runs) and the one set of one-at-a-time (45 runs) for a total of 465 runs. For the PNNL data, the
single set of pseudo-random samples (256 runs) and one control run varying 16 inputs was used
for a total of 257 runs.

Figure 3.15 shows the GPM predictions based on 440 runs (the training data). The plots in
this figure show the predicted magnitudes (with 90 error bars) of the first two harmonics in MAM
and JJA for the SGP region (REG07) for the 660 LLNL runs withheld from the training data. The
cross-validated (CV) R-squared values are also shown, using 20-fold cross validation. The GPMs
are more accurate at predicting the 1st harmonic. Figure 3.16 shows similar results for the MARS
predictions also based on the 440 training data runs.

Figure 3.15. GPM fits for the first two harmonics in MMA, JJA
in the SGP region

The R-squared metrics for the GPM and MARS models are shown in Figure 3.17. The GPMs
are in general more accurate than MARS. In general, it is easier for the emulators to predict the
Q50 (50%) of the precipitation output than the Q95 percentile. Also, it is easier to predict the
magnitude than the phase of the harmonics of the diurnal cycle. Figure 3.17 shows the (20-fold)
cross-validation R-squared values for GPM and MARS trained on each lab separately and jointly
to all data. Note that both GPM and MARS have problem with the PNNL data, except for the Q50
metric.

A bi-variate contour plot of the GPM response for the magnitude of the first harmonic in the
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Figure 3.16. MARS fits for the first two harmonics in MMA, JJA
in the SGP region
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Figure 3.17. R-squared values for precipitation metrics in MMA,
JJA in the SGP region, based on LLNL data, PNNL data, and the
joint data
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SGP region in the JJA season is shown in Figure 3.18. In this plot, the harmonic response is shown
as a function of the six most sensitive inputs. In these plots, either one input (diagonal plots) or two
(off-diagonal plots) are varied with the remaining inputs fixed at their default values (black circles).
The true response is shown on the diagonal plots, where the LLNL response is denoted with a circle
and the PNNL response by a triangle. The grey area shows 2-sigma prediction error bars. Overall,
zmconv tau is the most important parameter, although in the PNNL only data, cdlwatmi dcs is the
most important paramter.

Figure 3.18. Contour plot of GPM predictions. The response
contours show the GPM emulation of the first harmonic magnitude
in the SGP region 7 in the JJA season.

The Sobol’ main- and total-effect sensitivity indices were calculated using sampling-based
(Monte Carlo) based approach based on the original method of Sobol’ using two LH-sampled set
of size n = 10,000 each (the total number of surrogate evaluations is then n(2p + 2) where p is
either 16 or 22 for PNNL and LLNL respectively). The estimated sensitivity indices where tested
for Monte Carlo error using bootstrap techniques and where found to be relatively small. The
sensitivity indices where also tested for error in the surrogate models by generating realizations
from the GPM and by bootstrapping the MARS. As expected, for surrogate models with relatively
low R2, the resulting indices had large standard deviation, which should be factored in the final
results.
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Recall that the main effect indices indicate the relative variance explained by the main-effect
of each input variable, while the total effect indices indicate the relative variance explained by the
main-effect and any interaction with other inputs for a given input. Figure 3.19 shows the Sobol’
sensitivity indices for the magnitude of the 1st harmonic in region SGP in season JJA using GPMs
trained on the PNNL data (top), the LLNL data (middle), and using both the LLNL and PNNL data
(bottom). Figure 3.20 shows the same sensitivity indices, but based on a MARS surrogate instead
of a GPM. We note some difference in the two set of estimates, as expected, but the most important
input parameters are in each case are very similar (e.g., the top 4 parameters are identical and in
the same order for the joint PNNL/LLNL case).

Figure 3.21 shows the total sensitivity indices for 6 different metrics in JJA for region SGP,
showing that many of the parameters are not influential with respect to some of the metrics. Be-
cause the GPM and MARS surrogates are not very good emulators with respect to some of the
metrics, the LLNL group showed the data in a slightly different way. Figure 3.22 shows sensitiv-
ity indices for four metrics in two regions and two seasons (based on GPMs), but the areas where
the Sobol’ indices are less than 0.01 are colored grey, and the plot only shows results for those
metrics whose GPM has an R-squared value of greater than 0.5. The results are eliminated for the
poorer emulators (e.g. those whose R-squared is less than 0.5). The GPMs were used rather than
the MARS surrogates as they yielded higher R2 on averaged.

To construct a single total sensitivity index for a given region/season, the sensitivity indices
from multiple metrics where averaged using the GPMs’ R2 as weights, thus down-weighting sen-
sitivity indices based on poorly fitted GPMs. The resulting region/season based sensitivity indices
are shown in Figure 3.23 for 6 regions and 2 seasons. Finally, the indices were averaged across
regions and seasons to form a single sensitivity index, which are summarized in Figure 3.24.
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Figure 3.19. Sobol’ sensitivity indices for the magnitude of the
1st harmonic in region SGP in season JJA using GPMs trained on
the PNNL data (top), the LLNL data (middle), and using both the
LLNL and PNNL data (bottom).
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Figure 3.20. Sobol’ sensitivity indices for the magnitude of the
1st harmonic in region SGP in season JJA using MARS surrogates
trained on the PNNL data (top), the LLNL data (middle), and using
both the LLNL and PNNL data (bottom).
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Figure 3.21. Sobol’ sensitivity indices for metrics in region SGP
in season JJA using GPMs.
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Figure 3.22. Sobol’ sensitivity indices for four metrics in two
regions and in two seasons using GPMs. The results have been fil-
tered so that metrics where the Sobol’ indices are less than 0.01 are
colored grey and results are eliminated for GPMs with R-squared
values less than 0.5
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Figure 3.23. Sobol’ total sensitivity indices averaged across
metrics in each region/season for PNNL, LLNL, and joint
LLNL/PNNL study. The metrics where averaged together using
weighs based on the GPM’s R2.
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Figure 3.24. Averaged Sobol’ indices across all regions and met-
rics, based on PNNL data, LLNL data, and joint data

.
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Chapter 4

Conclusions

4.1 Joint sensitivity analyses

We aggregated the rankings from each of the three laboratories. This is shown in Figure 4.1. As
mentioned, part of the goal of this exercise was to perform a downselection on the parameters that
should be sampled in another CAM5 study at a higher resolution with a 1◦ study. The important
parameters that should be analyzed in subsequent studies are highlighted in green. From the LLNL
results, we focused on the averaged Sobol’ indices from the LLNL data. From the PNNL studies,
they provided ranks with a system of plusses and minuses, where a plus indicates a significant effect
of that variable. Each parameter has five plusses or minuses, where each of the five represents a
different metric. Finally, SNL reported a total fraction significant, which refers to the the fraction
of the correlations and Sobol indices that were significant for a given parameter, i.e. the number
for zmconv tau is 0.75 indicating that 75% of the responses showed some significant dependence
on zmconv tau.

The results in Figure 4.1 show strong similarities of parameter rankings, although different
methodologies were employed by each laboratory. This speaks to the robustness of the results and
also to the fact that these methods were all global sensitivity analysis approaches.

The objective of this study was to identify a few parameters that are the most influential to
the behavior of precipitation in CAM5, including the mean, extreme (95th percentile), and di-
urnal cycle. We analyzed the sensitivity of these precipitation metrics to cloud and atmospheric
parameters, and we investigated how the sensitivity varies as a function of spatial scale, region,
and season. The overall parameter rankings were very consistent. From the 32 parameters in our
study, we were able to identify a downselect set of 14 influential parameters that we recommended
be investigated in a set of 1◦ ensemble runs. These parameters include tau, dcs, rhminl, c0 lnd,
ke, alfa, and dmpdz, among others. In addition to providing guidance on influential parameters
for future studies relating to precipitation, this information may be used to guide the selection of
parameters for calibration activities.
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Figure 4.1. Ranking of CAM5 model parameters by different
laboratories. Summary of downselect list: parameters highlighted
in green should definitely be included in further 1◦ studies, those
in red should be eliminated, and those in yellow perhaps included.
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